Low-Rank Representation with Graph Constraints for Robust Visual Tracking

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Visual Tracking Algorithm with Low-Rank Region Covariance

Region covariance (RC) descriptor is an effective and efficient feature for visual tracking. Current RC-based tracking algorithms use the whole RC matrix to track the target in video directly. However, there exist some issues for these whole RCbased algorithms. If some features are contaminated, the whole RC will become unreliable, which results in lost object-tracking. In addition, if some fea...

متن کامل

Low-Rank Sparse Learning for Robust Visual Tracking

In this paper, we propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets). By representing particles as sparse linear combinations of dictionary templates, this algorithm capitalizes on the inherent low-rank structure of particle representations that are learned jointly. As such, it casts the tracking problem as a low-rank matr...

متن کامل

Robust Subspace Segmentation by Low-Rank Representation

We propose low-rank representation (LRR) to segment data drawn from a union of multiple linear (or affine) subspaces. Given a set of data vectors, LRR seeks the lowestrank representation among all the candidates that represent all vectors as the linear combination of the bases in a dictionary. Unlike the well-known sparse representation (SR), which computes the sparsest representation of each d...

متن کامل

Robust Visual Tracking via Fuzzy Kernel Representation

A robust visual kernel tracking approach is presented for solving the problem of existing background pixels in object model. At first, after definition of fuzzy set on image is given, a fuzzy factor is embedded into object model to form the fuzzy kernel representation. Secondly, a fuzzy membership functions are generated by centersurround approach and log likelihood ratio of feature distributio...

متن کامل

Graph Regularized Low Rank Representation for Aerosol Optical Depth Retrieval

In this paper, we propose a novel data-driven regression model for aerosol optical depth (AOD) retrieval. First, we adopt a low rank representation (LRR) model to learn a powerful representation of the spectral response. Then, graph regularization is incorporated into the LRR model to capture the local structure information and the nonlinear property of the remote-sensing data. Since it is easy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEICE Transactions on Information and Systems

سال: 2017

ISSN: 0916-8532,1745-1361

DOI: 10.1587/transinf.2016edp7422